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Abstract
MEAP, the moving ensemble analysis pipeline, is a new open-source tool designed
to perform multisubject preprocessing and analysis of cardiovascular data, including
electrocardiogram (ECG), impedance cardiogram (ICG), and continuous blood pres-
sure (BP). In addition to traditional ensemble averaging, MEAP implements a
moving ensemble averaging method that allows for the continuous estimation of indi-
ces related to cardiovascular state, including cardiac output, preejection period, heart
rate variability, and total peripheral resistance, among others. Here, we define the
moving ensemble technique mathematically, highlighting its differences from fixed-
window ensemble averaging. We describe MEAP’s interface and features for signal
processing, artifact correction, and cardiovascular-based fMRI analysis. We demon-
strate the accuracy of MEAP’s novel B point detection algorithm on a large
collection of hand-labeled ICG waveforms. As a proof of concept, two subjects com-
pleted a series of four physical and cognitive tasks (cold pressor, Valsalva maneuver,
video game, random dot kinetogram) on 3 separate days while ECG, ICG, and BP
were recorded. Critically, the moving ensemble method reliably captures the rapid
cyclical cardiovascular changes related to the baroreflex during the Valsalva maneu-
ver and the classic cold pressor response. Cardiovascular measures were seen to vary
considerably within repetitions of the same cognitive task for each individual, sug-
gesting that a carefully designed paradigm could be used to capture fast-acting event-
related changes in cardiovascular state.
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1 | INTRODUCTION

Researchers from a variety of fields employ cardiovascular
measurements to assess physiological and psychological
states. Within noninvasive research on cardiovascular physi-
ology, the most commonly employed methods of assessment
are electrocardiogram (ECG), impedance cardiogram (ICG),
and noninvasive continuous blood pressure (BP) monitoring.
A variety of measures that have been used to index cardio-
vascular health and fitness (Matthews, Salomon, Brady, &

Allen, 2003), stress reactivity (Kelsey, Soderlund, & Arthur,
2004; Lovallo, 2005), motivational state (Blascovich, 2008;
Seery, 2013; Wright, Contrada, & Patane, 1986), and emo-
tion (Kreibig, Samson, & Gross, 2013) can be derived singu-
larly and in concert from these data streams.

Innervated by the autonomic nervous system, the cardio-
vascular system responds dynamically to perturbations due
to physiological and psychological stressors. Such responses
can be necessarily fast acting, occurring on the order of
seconds.
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Current methods for processing and analyzing continu-
ous ICG-based cardiovascular data, however, are not well
suited to assessing such fast-acting changes. The most
widely used data processing method in ICG-based cardiovas-
cular research has long been the ensemble averaging tech-
nique (Kelsey & Guethlein, 1990). This technique is a
reliable method for summarizing cardiovascular state during
an experimental event. Ensemble averaging involves aligning
the R peaks of each heartbeat within a given period of time,
averaging the synchronized waveforms, and then marking
the components of the ensemble averaged cardiac cycle to
derive measures of interest. By averaging across cardiac
cycles, the ensemble averaging method mitigates the impact
of nonsystematic noise—respiratory and motion artifacts that
are not synchronous with the R wave of the ECG. This
method is advantageous as it requires annotation of only a
single ensemble averaged heartbeat for each repetition of
each experimental condition for each subject. Ensemble aver-
aging precludes the need to manually annotate the ICG sig-
nal from every individual cardiac cycle, a laborious and
error-prone process (Kelsey & Guethlein, 1990; Kelsey
et al., 1998; Obrist, 1981). The robustness and efficiency of
the ensemble averaging method (Kelsey & Guethlein, 1990;
Kelsey, Ornduff, & Alpert, 2007; Kelsey et al., 2004) has
made it an excellent tool for researchers studying cardiovas-
cular activity.

The primary drawback of the ensemble averaging
method is its limited ability to capture cardiovascular change
within a window of time. Where cardiovascular changes
occur and rebound quickly, these fluctuations may go unde-
tected when a fixed-window ensemble averaging technique
is applied. Depending on experimental design, these fluctua-
tions may reflect meaningful and predictive differences in
patterns of cardiovascular reactivity. Although ensemble
averaging has been applied to very short blocks of time
(Kelsey et al., 2004), the majority of psychophysiological
studies have employed block designs with at least 30 s per
trial. Moreover, using fixed-window ensemble averaging to
detect phasic changes will only be accurate to the extent that
the averaging window aligns with the timing of those phasic
changes, which may not be known a priori.

Here, we present a new method for characterizing cardio-
vascular reactivity—moving ensemble averaging. The major
innovation of this method is the ability to detect both state
and change of cardiovascular indices during individual
experimental trials. This technique is robust to respiratory
and movement-related artifact normally present in noninva-
sive recordings as well as radio frequency and magnetic arti-
fact present in an MRI environment (Cieslak et al., 2015).
Open-source software implementing this technique as well as
validation of its unique processing pipeline are presented.
We chose to design an approach using Python and

Enthought’s TraitsUI library for interactive plotting. The
result is MEAP: the moving ensemble analysis pipeline.

We begin with a summary of the cardiovascular indices
assessed in MEAP, followed by a rigorous definition of how
electrophysiological recordings are turned into estimates of
cardiovascular state when using traditional fixed-window
ensemble averaging. We then describe our newly proposed
moving ensemble averaging method, demonstrate the sim-
plicity of preparing data for our method, and present illustra-
tions that capture a rapidly changing set of cardiovascular
signals.

1.1 | Cardiovascular measures

MEAP is designed to process and analyze data from the
most common cardiovascular recording methods including
ECG, ICG, BP, respiration, and pulse oximetry. Most of
these data streams yield a continuous waveform that contains
shape and amplitude features that reflect cardiovascular proc-
esses. These features must be identified in the waveform,
either manually or through an algorithm, before their values
can be used to calculate indices of cardiovascular function-
ing. For example, ICG and ECG waveforms accompanying a
single heartbeat are plotted in Figure 1. While generally sim-
ple to identify visually, these waveform features and their
relations can also be described mathematically.

For each heartbeat, the ECG R point serves as the t50
landmark for within-heartbeat events. Throughout this arti-
cle, we define the corresponding heartbeat to begin at
t52200 ms and end at t5 1,000 ms relative to the R point,
where ms5milliseconds. Let the ECG voltage time series

FIGURE 1 Characteristic waveforms from ICG _z tð Þð Þ and ECG
v tð Þð Þ during a single heartbeat. Key features such as the ICG B point and
ECGQRS complex are labeled
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from the ith heartbeat be vi tð Þ. Thoracic impedance during a
heartbeat i will be referred to as zi tð Þ. The zi tð Þ signal itself
is not typically used for identifying critical points in the
blood flow cycle. Instead, the first derivative of the ICG
waveform _zi tð Þ5 d

dt zi tð Þ
� �

is used to facilitate the identifica-
tion of key inflection points. Two key features of this derived
ICG waveform, the B and X points (Figure 1), mark the
opening and closing of the aortic valve, respectively. The
time from the ECG Q point to the ICG B point defines the
preejection period (PEP), which is related to the contractility
of the heart muscle before blood is ejected. However, due to
difficulty in reliably capturing the relatively small Q point,
PEP is often calculated as the difference between the R point
and the B point (the RBI), which is comparable to PEP in
reliability (Kelsey et al., 1998, 2007) and validity (Kelsey
et al., 1998; Mezzacappa et al., 1999), and is sensitive to pre-
dicted effects of task manipulations (Kelsey et al., 2000,
2004) and individual differences (Kelsey, 1991; Kelsey, Orn-
duff, McCann, & Reiff, 2001). This form of PEP is some-
times referred to as PEPr (Berntson, Lozano, Chen, &
Cacioppo, 2004). This definition of PEP is also more robust
for scoring data acquired during fMRI (Cieslak et al., 2015).
Throughout this article and in the MEAP software, the RBI
definition is used.

PEP is a particularly useful cardiovascular index as it is
heavily influenced by the sympathetic nervous system, and
thus is a primary measure used to assess task engagement,
having been shown to vary with task difficulty and experience
(Blascovich & Tomaka, 1996; Kelsey et al., 2004; Wright &
Kirby, 2001). The ICG B and X points mark the beginning
and end of left ventricular ejection. This interval is commonly
called left ventricular ejection time (LVET). LVET can be
used to calculate stroke volume (SV), the amount of blood
ejected at a single heartbeat (Ebert, Eckberg, Vetrovec, &
Crowley, 1984). These estimates rely on a model of the torso
as either a cylinder or cone. The most commonly used equa-
tion for SV was proposed by Kubicek, Patterson, and Witsoe
(1970), calculating SV in milliliters for heartbeat i as

SVi5q3
‘2

Z2
0i
3max _zi tð Þð Þ3LVETi (1)

where q is blood resistivity (typically set at a constant of 135
ohms cm), Z2

0i is the square of the mean thoracic impedance
between the B and X points of _zi (Kelsey & Guethlein,
1990), max _zi tð Þð Þ is the maximum of _zi (i.e., the C point in
Figure 1), and ‘ is the distance between the thoracic voltage
electrodes.

Cardiac output at beat i (COi) is the amount of blood
pumped in liters per minute, derived from both the ICG and
ECG signal. The equation for cardiac output (Equation 2) is
stroke volume (in mL/beat) multiplied by instantaneous heart
rate (HR) in beats per minute, converted to liters per minute:

COi5HRi3SVi=1000: (2)

Blood pressure is typically measured in psychophysio-
logical studies as either SBP and DBP separately or com-
bined into mean arterial pressure (MAP) as

MAPi5
1
3

23DBPi1SBPið Þ: (3)

This blood pressure measure can be combined with ICG
and ECG to estimate total peripheral vascular resistance (TPR):

TPRi580 MAPi=COi; (4)

which is in units of dyne/cm2 (Sherwood, Dolan, & Light,
1990).

1.2 | Ensemble averaging

Instead of marking these features and calculating these indices
on individual heartbeats, it is both convenient and robust to
ensemble average heartbeats occurring within experimentally
relevant time windows. Suppose an experiment was run where
participants sat still for 5 min with no task and then were
exposed to randomized repetitions of two tasks, A and B, sep-
arated by a 30-s intertrial interval. Each task has k repetitions,
each lasting m seconds. ECG, ICG, and BP are measured. A
total of n heartbeats are detected during the experiment at
times T1,T2,. . .,Tn. The ECG signal corresponding to heartbeat
i is vi tð Þ. As defined earlier, let t represent the time within
heartbeat, ranging from 2200 to 1,000 ms, with t5 0 mark-
ing the R point. Time Ti is relative to the beginning of the
physiological recordings. The following is a generalized nota-
tion that will be useful in comparing traditional ensemble
averaging described in this section to our proposed moving
ensemble averaging described in the next section. Using vi(t)
and vj(t) as the ECG voltage time series for the ith and jth
heartbeats, respectively, where i 6¼ j, the traditional ensemble
averaged ECG signal for a single repetition of an experimental
condition beginning at time s0 and ending at time s1 (such
that s1 2 s0 5 m) is calculated as follows:

�v tð Þ5
Xn
i51

a ið Þvi tð Þ; (5)

where a(i) is a weight for heartbeat i; calculated as

a ið Þ5w i; s0; s1ð Þ
Xn
j51

w j; s0; s1ð Þ
" #21

; (6)

such that

w i; s0; s1ð Þ5
1; if s0 � Ti � s1

0; otherwise
:

(
(7)

Intuitively, traditional ensemble averaging starts by collecting
data for all heartbeats occurring between s0 and s1 into a matrix:

CIESLAK ET AL. | 3 of 17



V s0;s1ð Þ5

vk

vk11

�

vk1p

2
666664

3
777775; (8)

where the kth and (k1 p)th heartbeats are the first and last heart-
beats that occur inside the interval (s0,s1), respectively.

The ensemble averaged ECG signal would then be the
column means of V s0;s1ð Þ, similar to the ERP method used
for EEG analysis (Pfurtscheller & Lopes da Silva, 1999).
The same procedure is followed for _z and z.

Once the ensemble averaged signals are computed, cardi-
ovascular measurements are calculated on these ensemble
averaged signals as if they were single heartbeats. The result
is a single value for PEP, LVET, SV, CO, TPR for each
epoch of interest. Each measure is then typically converted
to a reactivity score by subtracting its value during the base-
line condition. Traditional ensemble averaging is popular
since one score per measure per fixed time window is a con-
venient format for a repeated measures analysis, which is
typically the final stage of a physiological reactivity study.
The final stage of the traditional ensemble averaging method
usually consists of modeling each cardiovascular index sepa-
rately using a repeated measures statistical analysis.

1.3 | Moving ensemble averaging

Our proposed approach, moving ensemble averaging, can be
thought of as applying an ensemble averaging-like operation
where, instead of averaging across the time epoch (by
equally weighting all observations within the specified time
epoch), a weighted ensemble average is calculated in a fixed
window around every heartbeat. The weighting function cor-
responding to traditional ensemble averaging (Equation 7) is
very similar to convolving a time series with a box kernel for
smoothing. Box kernels of a specific width have the undesir-
able property of weighting the measurements from all time
points within the window equally. When considering more
flexible weighted averaging, alternative kernels such as Han-
ning or Blackman can be used to weight nearby time points
more heavily while still incorporating more distal time points
for de-noising purposes (Nuttall, 1981).

MEAP users can choose from a number of such weight-
ing schemes; however, here we illustrate using a weighting
function wlin i; j; sð Þ that linearly downweights neighboring
heartbeats according to their distance from the ith beat.
Again, heartbeats are detected at times T1,T2,. . .,Tn. In our
illustrations, a window of half-width s5 15 s was used,
meaning that a total of 30 s of neighboring heartbeats were
included in the moving ensemble averaging. This value was
chosen because we will later compare the moving ensemble
averaged output to a 30-s fixed-window ensemble average.

For this initial MEAP paper, we chose the weighting func-
tion wlin because of its illustrative simplicity. Other window
functions and window lengths will be thoroughly explored
and compared under different scenarios in future studies.

A set of heartbeats and their corresponding signals vi tð Þ,
zi tð Þ; and _zi tð Þ are run through the moving ensemble algo-
rithm to produce a new, equal-sized set of signals, v̂i tð Þ, ẑi
tð Þ; and _̂z i tð Þ. Note that influences on the impedance signals
that are not synchronous with the ECG R wave, including
low-frequency artifacts such as motion, speech, and changes
in posture, are averaged out by the ensemble averaging pro-
cess, and their effects will be minimized in the moving
ensemble averaged waveforms.

The linearly weighted moving average formula is pre-
sented for ECG in Equation 9:

v̂i tð Þ5
Xn
j51

alin i; jð Þvj tð Þ (9)

with

alin i; jð Þ5

12wlin i; j; sð Þ=sð ÞXn
k51

12wlin i; k; sð Þ=sð Þ
" # ; if jTi2Tjj � s

0; otherwise
(10)1

8>>>>>>>><
>>>>>>>>:

where

wlin i; j; sð Þ5jTi2Tjj; if jTi2Tjj � s: (11)

For example, suppose we want to calculate the weighting
factor for a heartbeat j that occurs 5 s before heartbeat i using
s5 15 for the window half-width. The numerator of Equa-
tion 10 calculates how close Tj is to Ti as a fraction of s. The
denominator sums over the analogous measures for all the
heartbeats occurring in the 6 s interval around Ti. This guar-
antees that

Pn
j51 alin i; jð Þ51.

1.4 | Cardiovascular indices based on moving
ensemble averaged heartbeat signals

Moving ensemble averaged heartbeats are used to produce a
time series for each cardiovascular index. For example, SV
values can be estimated at times T1,T2,. . .,Tn. The time series
for each cardiovascular index can be examined for patterns
evolving over time, or alternatively each time series could
be summarized. For example, if the cardiovascular index val-
ues appear to change linearly over short intervals of time
corresponding to an epoch of interest, one could summarize
the pattern of change in the cardiovascular index using a

1[Correction added on 5 October 2017, after first online publication:
Equation 10 has been amended.]
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slope and intercept estimate as in simple linear regression.
For example, suppose y(s) is a chosen cardiovascular index
for s� {Tk,Tk11,. . .,Tk1p}, where times Tk,Tk1p mark the first
and last heartbeats within the epoch of interest. Within
MEAP, fitting the model

yðTiÞ5b1ðTi2T Þ1b01Ei (12)

leads to estimates of the rate of linear change of y Tð Þ as b̂1 and
the intercept as b̂0, and provides the corresponding R2 value.
Heartbeat times Ti are centered in Equation 12 for a more
robust estimation of slope. For SV, b̂0; b̂1 are in units of ml
and ml/second, respectively. Estimates b̂0 and b̂1 for each of
multiple time epochs of interest could subsequently be used in
a repeated measures analysis to assess not only changes in the
mean cardiovascular index (b̂0) under different experimental
conditions, but also in the mean rate of change (b̂1).

It is important to note that the sequence T1,. . .,Tn is specific
to a single recording. Multiple separate recordings are typically
created during an experimental session. Moving ensemble aver-
aging is not reasonable across recordings if there is time
between the acquisition of two consecutive tasks. In this manu-
script, we calculate percent change against a short window of
data immediately preceding the experimental events. It was
therefore necessary that some task-free time was recorded at
the beginning of each recording session. The events from multi-
ple recordings can be analyzed together in the framework of a
general linear model, as used commonly for multiscan fMRI
analysis (Friston, Zarahn, Josephs, Henson, & Dale, 1999).

1.5 | MEAP software

MEAP was originally designed as a tool for analyzing large
batches of cardiovascular data from multiple participants that
was intuitive enough to be used by researchers without medi-
cal or engineering expertise. We automated as many parts of
the pipeline as possible to reduce user error and increase
reproducibility. Although many steps are automated, the
interface requires the user to inspect the data at each step to
confirm that processing was performed as expected. MEAP
includes two tools: a preprocessing pipeline and an analysis
interface.

1.5.1 | Software availability

MEAP runs on Windows 7 or greater, Mac OS X 10.10 or
greater, and most recent, Linux distributions. Source code is
released under the GNU General Public License version 2.
Binary installers can be downloaded from http://github.com/
mattcieslak/MEAP/releases/. Detailed instructions for instal-
lation along with a step-by-step tutorial for data processing
and analysis are available in the online documentation at
http://meap.readthedocs.io/en/latest/.

1.5.2 | MEAP pipeline interface

MEAP reads a Microsoft Excel file that specifies the locations
of input files and their corresponding subject demographic and
anthropometric data, such as distances between electrodes.
Data files can also be imported manually, by right clicking
within this window, selecting “import,” and navigating to the
appropriate file. MEAP can currently read data from Acq-
Knowledge (BIOPAC) or MATLAB formatted data. Figure 2a
shows the MEAP logo and the top-level pipeline interface.
Input data files are listed on the bottom left of the window.
Files that have run through the pipeline to completion are col-
ored light blue, while the currently active data file is high-
lighted in bold blue. The array of buttons on the right side of
the window (magenta rectangle) shows the available process-
ing steps in the pipeline, which remain grayed out until their
prerequisite steps have been completed.

After importing data, the user then inspects the data to
check for unusable segments of the recording. Such seg-
ments can be “censored” to be excluded from the rest of the
pipeline, and measurements such as HR and heart rate vari-
ability are adjusted to reflect the censored intervals. Figure
2b depicts the “inspect data” interface. The black arrow high-
lights a small negative spike in the _z tð Þ signal where the user
has decided to censor the data.

Before QRS detection, the user can apply a motion/respi-
ration correction operation on the base impedance signal.
Often speech and movement-related artifacts typically appear
as a low-frequency perturbation in Z0. MEAP’s approach to
correcting these is to fit the Z0 time series with a series of
Legendre polynomials and subtract the fitted time series
from the data. The user may choose the order of polynomial
regressors used during this step. The artifact-removed Z0 sig-
nal is then used throughout the rest of the pipeline. Note that
a similar approach can be taken for other signals, such as
blood pressure, during preprocessing.

Next, the user must detect and isolate each heartbeat.
MEAP provides a number of options for this task, depending
on the nature of the data. For relatively clean recordings, the
default Pan-Tomkins algorithm (Pan & Tompkins, 1985)
may be used. If the data were acquired during fMRI, there
are two additional options. The first, called multisignal detec-
tion, finds heartbeat-related peaks in a simultaneously
recorded non-ECG signal. For example, ICG and pulse oxi-
metry have robust heartbeat-related peaks that are largely
unaffected by fMRI-related noise. QRS complexes are
searched for in time windows around peaks in the secondary
signal. Finally, users may load a second ECG signal such as
one collected by an EEG system. After one of these algo-
rithms is run to detect QRS complexes, the user can man-
ually add or remove QRS complexes as necessary. Figure 2c
shows the QRS detection interface. Identified QRS com-
plexes are displayed with a square at each apex. The arrow
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highlights a grayed-out area that reflects the censored region
from Figure 2b. The user has added a “do not ensemble” dia-
mond marking to the R point of this QRS complex, meaning
that the heartbeat should still be included in estimates of HR
and heart rate variability but its corresponding _z tð Þ signal
should not be included in any moving or traditional ensem-
ble averaging. The bottom right panel within Figure 2c is a
matrix of all identified QRS complexes aligned at their
R points (i.e., the matrix in Equation 8). A mislabeled
T wave, for example, will show up clearly in this plot, ena-
bling the user to quickly hop to that location and manually
fix the error.

After heartbeats have been identified, features on each
waveform must be marked. MEAP initially presents the user
with a plot of each signal ensemble averaged across the
whole recording. The user checks that each feature has been
correctly identified on these “global ensemble averages,” and
the points will be marked on matching features on each indi-
vidual heartbeat during subsequent analyses. The key excep-
tion is the ICG B point. The method employed to detect
B points is described below.

1.5.3 | B point classification algorithm

While most waveform features are easily located minima or
maxima, the B point on the _zi waveform can be difficult to
mark (Debski, Zhang, Jennings, & Kamarck, 1993). Recent
work has addressed the various methods currently employed
to label this feature (�Arbol et al., 2016), where specific peaks
or zero-crossings of derivatives are compared to manual B
point marking. MEAP implements many of the algorithms
examined by that study, but also introduces a new classifier-
based B point marking algorithm. Our algorithm begins by
presenting the user with an interface where _̂z i and its first
two derivatives are displayed in a visual array. The user
moves the cursor and clicks to select the B point. A random
selection of heartbeats is selected by MEAP for manual
marking in this manner (Figure 3a). These heartbeats are
then used to train a classifier that can then be applied to all
heartbeats (Figure 3).

Intuitively, we want to train a regression algorithm to
take a short segment of a _̂z i time series and identify how far
(in time) the center of this segment is from the B point. For
each hand-marked heartbeat, the algorithm examines the raw
signal in fixed-size chunks surrounding each millisecond
between the R point and the C point. Each of these chunks is
paired with their distance (in milliseconds) from the hand-
labeled B point, and the learning algorithm learns a function
that maps feature vectors to times.

In our implementation, we extracted _̂z i data in 41-ms
chunks at 1 kHz and concatenated these chunks along with
the first derivative of this time series into a feature vector

FIGURE 2 First steps in theMEAP preprocessing pipeline.
(a)MEAP logo and top-level pipeline interface. Left: input data files.
Right: buttons corresponding to the steps in the processing pipeline.
(b) “Inspect data” interface. Black arrow highlights a region inwhich the
signal was censored. (c) QRS detection interface. Arrow highlights the cen-
sored region from (b). Black diamond at the R peak of this QRS complex
indicates that this heartbeat should still be included in estimates of heart
rate and heart rate variability but its corresponding _z tð Þ signal should not
be included in any ensemble averaging. Bottom right: a matrix of all identi-
fied QRS complexes aligned at their R point (i.e., matrix in Equation 8)
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FIGURE 3 (a) MEAP’s B point training interface. The set of randomly selected heartbeats (left) lets users click a heartbeat that will then be displayed
in the middle plot arrays. Bottom right: one user-chosen index out of SV, PEP, or LVET is plotted, and this panel is automatically adjusted as the user
makes edits. Top right: systolic time intervals for all heartbeats are mapped to two dimensions and plotted. (b)Moving ensemble interface. Each
cardiovascular index is plotted on the left versus time. User-specified parameters for moving ensemble averages (s;a, etc.) may be selected on the bottom
right. Amatrix of _z tð Þ is displayed as an image (top right), thereby illustrating howmuch temporal smoothing is introduced by the user’s choice of
parameters
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(with a total of 82 total features). The B point detection algo-
rithm is trained to match this feature with the distance in
milliseconds of its center time from the B point. Each unseen
_̂z i tð Þ is then similarly converted to feature vectors for each
millisecond between the R point and the C point. The
learned function is applied to each feature vector, and the
millisecond mapped closest to zero is marked as the B point.
This procedure is illustrated in Figure 4.

The top half of Figure 4 depicts the training process.
Hand-marked heartbeat i’s _̂z waveform ( _̂z i) is plotted in
blue. In order to train the classifier, each millisecond
between the R point and the C point needs to be turned into
a feature vector. At each millisecond tk within the range of
t5 0 to the C point time, we extract the data from _̂z i over
the range ftk220 ms; tk120 msg, providing a vector length
of 41 ms. This operation is depicted in Figure 4 as a circle
around tk and a gray bar covering the 6 20 ms on either side
for a few illustrative choices of tk.

The top right panel shows these segments of _̂z i on the x
axis, which corresponds to the segment’s time relative to the

R peak (tk), which is known. These segments are mapped to
the y axis, which represents the distance in milliseconds
between tk and the B point for this heartbeat. B points subse-
quently are estimated for all heartbeats without hand-marked
B points (shown in Figure 4, bottom) by similarly breaking
each of these heartbeats up into feature vectors correspond-
ing to each tk between the R point and C point. The esti-
mated distances from the B point, t̂ k, are calculated by
running each feature vector through the classifier and select-
ing the t̂ k that is closest to 0. If multiple signal segments are
equally close to 0, the mean is chosen as the B point, and a
warning is printed into MEAP’s log.

1.5.4 | Empirical demonstration of B point
detection algorithm

For our first test case, we collected a large repeated measures
ICG dataset. Each of 37 participants completed the same
task procedures twice, one with measurements taken with
traditional aluminum mylar bands and once with eight fMRI-

FIGURE 4 Diagram of B point classifier algorithm. Top: Training procedure. Bottom: Learned mapping is applied to segments of data from unseen
heartbeats, and the B point is marked as the value closest to zero in the outputs
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compatible carbon fiber spot electrodes. Aluminum mylar
bands were positioned according to the four-band array sug-
gested by Sherwood et al. (1990). Carbon fiber electrodes
were placed as suggested by Bernstein (1986). Each iteration
of the task consisted of a 5-min resting baseline, a cold
pressor task lasting up to 1 min, and a 2-min recovery
period. All measurements in this first test case were taken
with the participant in a supine position. ICG data were col-
lected using BIOPAC’s NICO100C-MRI amplifier, inte-
grated using an MP150, and displayed and stored using
AcqKnowledge software version 4.3 (BIOPAC, Goleta, CA)
[Correction added on 5 October 2017, after first online publi-
cation: Equipment and software information have been
amended.]. These data were ensemble averaged in 30-s fixed
windows and manually annotated, resulting in 4,810 man-
ually labeled _z tð Þ waveforms collected from these 37
participants.

Several candidate B point detection algorithms were
tested on this dataset. These machine-learning algorithms
all take a vector as input and learn a mapping to a scalar.
We used implementations from Scikit-Learn (Pedregosa
et al., 2011): support vector regression (Drucker, Burges,
Kaufman, Smola, & Vapnik, 1997), kernel ridge regression
(Murphy, 2012), and AdaBoostR2 (Drucker, 1997). Results
are shown in Figure 5. In our studies, the top performing
regression algorithm for B point marking among these three
was AdaBoostR2 with a mean absolute error of 1.3 6 1.5
ms. AdaBoostR2 was therefore chosen as the default algo-
rithm used in MEAP.

For our second test case, to evaluate the AdaBoostR2 B
point detection algorithm performance on ICG measured on
seated subjects, we ran 10-fold cross-validation on data from

two participants discussed further in the upcoming section
“Empirical demonstration of MEAP.” Over a total of 2,820
hand-labeled B points, we observed a mean absolute error of
0.93 6 0.98 SD ms. The corresponding cumulative distribu-
tion function of detection errors is plotted in online support-
ing information Figure S2.

1.5.5 | MEAP analysis interface

The analysis interface allows the user to specify the design
used in their experiment and calculates cardiovascular indi-
ces during each specified time period. These time periods
and their corresponding preprocessed data files are specified
in a Microsoft Excel file.

Figure 6 shows the result of loading preprocessed data
into the MEAP analysis interface. The spreadsheet-like area
in the top left of the window lists the user-specified time
periods. The bright-blue highlighted row is the “active”
experimental event for which ensemble averaged waveforms
are displayed in the panel below. The user can adjust annota-
tions by clicking and dragging within the plot. This allows
the user to ensure that waveform features are correctly
marked. Cardiovascular indices are updated in the spread-
sheet view in real time.

The rightmost two plots show data colored by subject
ID. The top right plot is the result of decomposing heartbeat
feature arrays using independent components analysis and
mapping each heartbeat based on its values for the first two
independent components. The bottom right plot here shows
the distance of the ICG B point from the ECG R point in
milliseconds. Both of these plots are useful for identifying
outliers, and clicking a point on either plot will cause the
spreadsheet to jump to that time period’s row and display the
signals in the lower left plot.

Once the user has verified the quality of the heartbeat
annotations, the results are written to a CSV file or Microsoft
Excel spreadsheet. The final output contains a row for each
event in the design file with columns added for all the calcu-
lable indices. Model fits and parameters from Equation 12
are also included. Output files can then be directly read into
the user’s preferred statistics software package.

2 | METHOD

2.1 | Empirical demonstration of MEAP

In order to demonstrate the utility of MEAP software and the
moving ensemble average, we conducted a small longitudi-
nal multiconditional study. Two female subjects, ages 19 and
21, completed a series of experimental tasks on three sepa-
rate occasions over a 2-week period.

FIGURE 5 Cumulative distribution functions of absolute errors
are plotted for the best-performing B point identification algorithms.
The height of each of the curves (step functions) at any chosen x shows
the proportion of the 4,810 ICG waveforms that had x milliseconds of
error or less based on the corresponding B point identification algo-
rithm. The data are in 1-ms steps, as this is the resolution MEAP uses
internally
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For this proof of concept, we selected a set of four
tasks, including two frequently used physical stressors
(the cold pressor and Valsalva) that are known to produce
large and measurable responses (Gorlin, Knowles, &
Storey, 1957; Kasagi, Akahoshi, & Shimaoka, 1995; Kel-
sey et al., 2007; Levin, 1966). These Valsalva (compres-
sion of the pelvic floor muscles) and cold pressor stressors
were ideal for our purposes of illustrating MEAP’s ability
to describe the time-evolving patterns of change of a phys-
iological measure, both within a participant and across
participants. While the cold pressor and Valsalva tasks
were chosen due to expected strong physiological
changes, we also included two frequently used tasks for
which we did not have prior reason to expect systematic
physiological responses, namely, a video game and a ran-
dom dot kinetogram task.

For this illustrative study, the order of three of the
tasks (cold pressor, Valsalva maneuver, video game) was
varied, as well as the order of the durations of each of the
cold pressor (15, 30, 60 s) and video game (1, 2, 5 min)
tasks. The random dot kinetogram task was completed

before or after the rest of the experimental trials of the
experiment.

Each session began with a 5-min baseline recording.
Subjects then completed each task, resting for 2 min between
each. Physiological measures were recorded starting 30 s
before the onset of the task or stressor, throughout the dura-
tion of the stressor, and over an additional 2-min recovery
period following each task.

We quantified the similarity of the cardiovascular
responses within each task by calculating the cross-
correlation function (CCF). For each cardiovascular index
(e.g., PEP, CO, etc.) the time series was resampled to 1 Hz
and divided into subsets including the period starting 5 s prior
to task onset and ending 25 s after task onset. Cross-
correlation was used because differences in speed and force
of the Valsalva maneuver can result in phase differences in
the response. To quantify the similarity of these responses,
we calculated the CCF between all six response time series
(three per subject). The CCF maxima (and their correspond-
ing time lags) were separated into two groups depending on
whether the time series being compared came from the same

FIGURE 6 MEAP interface for traditional fixed-window ensemble averaging analysis. The user preprocesses their data and loads a spreadsheet that
points to the outputs and specifies experimental event onsets within them. These appear as rows in the spreadsheet to the top left. The rightmost two plots
show data colored by subject ID and are designed to facilitate the detection of outliers within and between subjects
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subject or different subjects. Complete code for performing
these analyses is included in the supporting information. The
mean of the CCF maxima should be close to 1 if the response
time series are consistently shaped. Due to the small sample
size, we refrain from performing significance tests.

To compare the moving ensemble method to current alter-
native methods, the Valsalva maneuver responses were ana-
lyzed in three different ways. We used MEAP with s5 15,
then processed the data again with s5 0, equivalent to per-
forming single-heartbeat analysis. Finally, we performed a
traditional fixed-window ensemble averaging analysis.

2.2 | Experimental tasks

2.2.1 | Cold pressor

Cold pressor tasks are frequently used in hypertension
research (Kasagi et al., 1995; Wood, Sheps, Elveback, &
Schirger, 1984) and as a means of eliciting vasoconstric-
tion in studies assessing the reliability of cardiovascular
measures (Kelsey et al., 2007). Submerging the arm or
foot in near-freezing water (Sherwood, Allen, Obrist, &
Langer, 1986) or placing ice packs on the arm, foot, or
forehead (Kelsey, Alpert, Patterson, & Barnard, 2000;
Peckerman et al., 1991) has been shown to produce a reli-
able increase in TPR.

During an experimental session, each of the two partic-
ipants completed a single cold pressor task lasting either
15, 30, or 60 s. Based on previous research (Kelsey et al.,
2000; Peckerman et al., 1991) and in order to minimize
movement, a folded “sandwich” of ice packs was slipped
onto the participant’s hand for the amount of time speci-
fied by the trial. Each trial was separated by a recovery
period of 2 min.

2.2.2 | Valsalva

The Valsalva maneuver, in which one attempts to force
the contents of one’s lungs out through one’s nose while
the airway is blocked, produces a baroreflex response
associated with a cyclical changes in both stroke volume
and vascular pressure. In healthy individuals with a nor-
mal cardiovascular system, the Valsalva maneuver pro-
duces a decrease in pulse pressure followed by an
increase, overshooting the initial, resting MAP value once
pressure is released. These cyclical changes are enacted to
return the system to baseline and equalize blood flow to
the brain and periphery under conditions of pressure
changes. Due to these characteristic changes that the Val-
salva maneuver evokes in healthy individuals, cardiovas-
cular reactions to this maneuver have long been used to
test cardiac function (Gorlin et al., 1957).

Participants completed a single Valsalva maneuver for
approximately 3 s once during each of the three experimental
sessions. Participants were instructed to take a deep breath
and contract their abdominal/pelvic floor muscles for 3 s
without exhaling. Every maneuver was followed by a relaxa-
tion period lasting 2 min.

2.2.3 | Video game

The video game was employed to elicit psychological stress
rather than as a simple physical perturbation to the system. Par-
ticipants played the video game “Crack-Attack,” a Tetris-like
game in which ascending colored blocks are to be eliminated
by aligning three or more of the same color by switching the
blocks in the horizontal direction only (http://crackattack.sour-
ceforge.net). The game was played on “extreme” mode, which
greatly increased the speed of ascension and difficulty of the
game and, hypothetically, the degree of psychological stress as
well. Previous work has shown that a similar video game task
reliably elicited significant cardiovascular changes from base-
line (Kelsey et al., 2007). Each of the two participants played
this game for 1, 2, or 5 min during each session, in random
order.

2.2.4 | Random dot kinetogram task

The random dot kinetogram is a decision-making task that
was implemented either before or after the other tasks. The
task displays an array of mostly randomly moving dots, with
a group of these dots moving together in a right or left direc-
tion (Britten, Shadlen, Newsome, & Movshon, 1992). The
participant was told to distinguish whether this group was
moving to the right or the left. This task thus served not as a
stressor, but rather to measure cardiovascular state during a
prolonged, repetitive perceptual task.

2.3 | Physiological measures and equipment

The physiological measures selected for this study were
ECG, BP, and ICG—relatively standard measures of differ-
ent aspects of the human cardiovascular system that can be
used to evaluate physiological changes in participants due to
perturbations to the system.

In order to assess ICG, a total of eight carbon fiber elec-
trodes were placed on the neck and torso: two on each side
of the neck and two on each side of the torso. Electrodes
were placed identically to those in the cold pressor study
(Bernstein, 1986).

Interelectrode distances were measured (between the
inner pairs of electrodes) and recorded for later input into
Equation 1 for calculation of SV and, subsequently, CO.
ECG recordings were obtained using a modified Lead II
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configuration with sensors placed at the top of the sternum
and at the bottom of the left pectoral muscle. The ICG elec-
trodes provided the necessary ground.

Data were collected using the following equipment
from BIOPAC (Goleta, CA): ECG was collected using an
ECG100C-MRI amplifier, ICG using a NICO100C-MRI
amplifier, and BP using the CNAP Monitor 500. Data were
integrated using an MP150, and displayed and stored using
AcqKnowledge software version 4.3 (BIOPAC) [Correction
added on 5 October 2017, after first online publication:
Equipment, software and manufacturer information have
been amended.].

2.4 | The issue of baseline calculation

Cardiovascular reactivity analysis requires a baseline mea-
surement. This is typically done by recording as the partici-
pant rests for at least a few minutes after electrodes are
attached and before the tasks begin. Cardiovascular measure-
ments are then examined to assess if they have stabilized
over the baseline recording, and, if so, an average of the final
few minutes of baseline will be used as the official baseline

value for that recording session. This approach has been
used for decades, having been validated for numerous tasks
(Kelsey et al., 2007). However, baseline measurements have
been a thorny issue both theoretically and practically when-
ever hemodynamic measurements are studied (Stark &
Squire, 2001). A true baseline is hard to define in a homeo-
static system.

MEAP leaves baseline estimation and subtraction up to
the user. All output is in absolute units. This enables the user
to record and use a subject-specific explicit baseline condi-
tion, or to allow for the estimation of baseline within the
framework of a mixed model. If the former approach is cho-
sen, the user simply finds the baseline events in the output
spreadsheet and subtracts their value from all experimental
event measurements for that subject. The latter approach is
particularly useful for event-related designs, as one can bor-
row tools from fMRI analysis where baseline often drifts
over time (Lowe & Russell, 1999). Assuming that the onsets
of experimental event types are evenly balanced across the
recording, a drifting baseline can be incorporated into a lin-
ear mixed model as a set of orthogonal polynomials. Experi-
mental event types are included in the design, and their
coefficients are fit simultaneously to the drifting baseline.

FIGURE 7 Percent change in physiological measurements when a Valsalvamaneuver was performed at t5 0 on three separate occasions for each of
participants P1 and P2. Cardiovascular measurements are divided into two side-by-side columns separated by a thick line, with each row depicting three
different ways tomeasure the response to the Valsalva maneuver. The subcolumns depict, from left to right, the moving ensemble averaged time series, the
raw signals with no averaging, and the fixed-window ensemble averaged response

F7-F10
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Recently, a similar model has been proposed for characteriz-
ing event-related galvanic skin responses (Bach, Flandin,
Friston, & Dolan, 2009).

We do not calculate reactivity against the 5-min baseline
recordings taken at each session for the four tasks presented
here. Instead, our presented percent change values are relative
to the 5-s interval prior to the onset of the task. Additional
repetitions and a balanced design would be necessary to per-
form a proper statistical analysis of these rapid physiological
responses. Figure 7, 8, 9, and 10, along with the Discussion,
are a purely illustrative demonstration of how cardiovascular
state changes at the onset of a trial.

3 | RESULTS

3.1 | Comparison to existing methods

Responses to the Valsalva maneuver are quantified in
three ways and displayed in Figure 7. Each row contains a
cardiovascular index quantified by a different method in
each of the two main columns. Traditional fixed-window
ensemble averages (using 30 s) are shown as bar plots in
the rightmost subcolumns of each main column because
they yield a single value instead of a time series for each
replication of the task.

The similarity of responses is quantified for the moving
ensemble averaged data in the section below and for the
single-heartbeat analysis in the supporting information Table
S1. The fixed-window ensemble averages were not assessed

FIGURE 8 Moving ensemble averaged physiological responses to
the cold pressor. Percent change in physiological measurements when ice
packs were applied to the hand that was not being used for blood pressure
measurements is plotted for P1 and P2. The expected response (namely,
increased TPR) is observedwhen the ice packs are applied for 60 s. Cold
packs were applied for three different durations, resulting in different
lengths of plotted data

FIGURE 9 Moving ensemble averaged cardiovascular time series
during a 5-min random dot kinetogram task, for each of three sessions for
each participant P1 and P2
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statistically since these only provide one value per task/ses-
sion per subject for each of the CV measures.

In general, we see that the single-heartbeat analysis is
noisier but finds larger percent change values. (Note that the
vertical axes have different scales). The single-heartbeat
response time series have overall lower cross-correlation
coefficients (Table S1). The fixed-window ensemble aver-
aged responses do not exhibit clear patterns for all variables
except for PEP, which we see in the other methods has a
relatively monotonic (negative) response to the Valsalva
maneuver.

3.2 | Consistency across repetitions of the
Valsalva maneuver

The Valsalva maneuver, a physical task, produces similar
patterns of responses on certain cardiovascular measures

within and across individuals. These means are presented for
each cardiovascular measure in Table 1. For reference, a cor-
relation test of 31 samples with any of these correlation coef-
ficients would result in a p value less than .01; however, it
would not be valid to calculate p values on these mean CCF
maxima directly, due to the small sample size. For this rea-
son, these values should be interpreted primarily as a sanity
check.

3.3 | Responses to different tasks

Responses to physical perturbations (Valsalva maneuver and
cold pressor) are consistent with the known physiological
responses to these tasks. The cold pressor produces a well-
known rise in TPR in the trial where the ice was applied for
60 s (Figure 8). The Valsalva maneuver, although performed
for only 3 s, produced clear examples of the baroreflex (Fig-
ure 7, left subcolumns): heart rate rapidly changes, leading to
TPR changes, with associated changes in SV to counter the
pressure from the maneuver. The baroreflex response is
cyclic and rapidly changing. This illustrates the benefit of the
finer time scale provided by the MEAP visualization,
whereas a traditional ensemble average over the displayed
30-s period would have been at too coarse a time resolution
to describe these rapid baroreflex changes.

FIGURE 10 Moving ensemble averaged cardiovascular time series
during a video game

TABLE 1 Similarity of the cardiovascular response to the
Valsalva maneuver as measured by the mean CCF maxima

Measure Comparison Mean CCF max Mean lag (ms)

CO Between 0.56 (0.18) 20.89 (4.73)

Within 0.45 (0.29) 4.67 (4.41)

HR Between 0.63 (0.08) 0.11 (1.45)

Within 0.61 (0.12) 21.67 (1.37)

LVET Between 0.78 (0.09) 23.22 (2.28)

Within 0.81 (0.10) 1.00 (2.37)

PEP Between 0.80 (0.10) 0.78 (3.67)

Within 0.80 (0.08) 2.00 (4.77)

SV Between 0.61 (0.16) 26.78 (3.31)

Within 0.65 (0.26) 22.00 (3.74)

TPR Between 0.65 (0.34) 2.44 (3.84)

Within 0.61 (0.34) 22.17 (5.34)

Note. Standard deviations are reported in parentheses. The means and standard
deviations of the time lags corresponding to the CCF maxima are also listed.
CCF5 cross-correlation function; CO5 cardiac output; HR5 heart rate;
LVET5 left ventricle ejection time; PEP5 preejection period; SV5 stroke
volume; TPR5 total peripheral vascular resistance.
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We see considerably more variability during the cogni-
tive tasks (Figure 9, 10). Cardiovascular indices varied sub-
stantially not only across individuals, but also substantially
during repetitions of the same task within an individual.
Since we did not record performance measures during these
tasks, we could not relate performance to physiological state.
Previous work has found that moving ensembled data from a
pretask preparatory period can predict performance on the
subsequent trial (Cieslak, 2016), so the lack of consistent
response to cognitive tasks here may relate to the need for a
more sophisticated experimental design to study task consis-
tency. No behavioral data were collected during the video
game task in this illustrative example. In future studies, it
would be interesting to see if performance was affected by
the dramatic changes observed within trials or if those
changes were a reaction to events in the game.

4 | DISCUSSION

The moving ensemble averaging method presented here pro-
vides several advantages over traditional ensemble averaging
methods and may represent a significant advancement in the
field of cardiovascular assessment. First, and most obviously,
this technique allows for the robust examination of near-
continuous cardiovascular responses to discrete stimuli. The
increased temporal resolution of the moving ensemble ena-
bles the assessment of variability within an individual across
trials. It should be noted, however, that MEAP will not solve
systematic problems introduced at data collection such as
poorly attached electrodes, imbalanced designs, or trial-
related systematic artifacts.

Some of the most popular tasks for inducing stress in a
laboratory setting require participants to perform a speech in
front of others (Kirschbaum, Pirke, & Hellhammer, 1993).
Speech causes fluctuations in the Z0 signal that can impact
estimates of stroke volume, and therefore cardiac output and
TPR. Although the Valsalva maneuver includes respiration
and muscle activity, it would be prudent to investigate
robustness to speech in future work. For reference, previous
research with tasks that involve speech and other activities
has shown that fixed window ensemble averaging procedures
are robust (Kelsey, 1991; Kelsey et al., 1998; Mezzacappa,
Kelsey, & Katkin, 1999), suggesting that moving ensemble
averaging may also perform well under such circumstances.

Statistically, the moving ensemble method recasts physi-
ological reactivity as a time series problem. This has impor-
tant implications for theories linking cardiovascular
reactivity to motivation. Motivation can shift rapidly in rela-
tion to specific events and feedback (Quigley, Barrett, &
Weinstein, 2002). For example, though an individual may
display only a moderate threat response when averaged over
the course of a GRE exam (https://www.ets.org/gre), he or

she may display cardiovascular reactivity characteristic of
threat while solving difficult questions, but a pattern consistent
with a challenged motivational state while answering easier
items. The extent and duration of reactivity to specific ques-
tions may be a better predictor of overall performance than car-
diovascular state averaged across the full exam. While multiple
theories of motivation as well as emotion discuss the dynamic
nature of appraisals (Blascovich & Tomaka, 1996; Frijda,
Kuipers, & Ter Schure, 1989; Gross, 2002; Lazarus & Folk-
man, 1984), current methods for processing cardiovascular
data have not allowed for their examination with sufficient
resolution to assess physiological correlates of shifting apprais-
als as they occur in real time. The ability to track changes in
cardiovascular responses with greater temporal resolution, and
to model shifting baselines, is critical to increasing understand-
ing of the relation between cardiovascular physiology and auto-
matic appraisal processes (Blascovich, 2008). Conscious
reappraisal, which has been shown to improve cardiovascular
and cognitive responses to stress (Jamieson, Nock, & Mendes,
2012), is likely also a rapidly changing phenomenon.

Increasing the temporal resolution of key cardiovascular
indices also has the advantage of facilitating their pairing
with other time-varying signals. These signals may index
physiological activity within the same person or an interac-
tion partner. Within individuals, the simultaneous recording
of cardiovascular reactivity and hemodynamic and/or electri-
cal activity of the brain allows for time lag analyses to be
conducted examining the temporal dynamics of communica-
tion between central and peripheral systems. Such methods
may represent an important step in disentangling the role of
peripheral and central nervous systems in the modulation of
cardiovascular reactivity and behavior. Performing similar
time lag analyses on cardiovascular data from two or more
individuals may help elucidate the dynamics of emotional
contagion (Hatfield, Cacioppo, & Rapson, 1993) and coregu-
lation (Butler & Randall, 2013; Dezecache et al., 2013), and
stress reactivity during intergroup interactions (Mendes,
Blascovich, Lickel, & Hunter, 2002).

The moving ensemble estimates of cardiovascular indices
demonstrated here are statistically similar to the blood
oxygenation-dependent (BOLD) signal measured in fMRI.
Early fMRI studies utilized block-design experiments—simi-
lar to those typically used with fixed-window ensemble aver-
aging. The advent of so-called event-related fMRI designs
not only allowed for estimation of responses to single trials,
but the randomized order of events precluded potential con-
founds such as habituation, fatigue, and anticipation (Dale,
1999). Adopting a similar modeling strategy for ICG studies
also allows for an estimation of baseline during intertrial
intervals through a general linear model (Bach et al., 2009;
Friston et al., 1999). Applying this method to cardiovascular
data is likely to yield similar advances in the study of the
peripheral systems as it did for the central nervous system.
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